
Candidate–aware Graph Contrastive Learning for
Recommendation

Wei He∗
Guohao Sun∗

2212483@mail.dhu.edu.cn
ghsun@dhu.edu.cn
Donghua University

Jinhu Lu
Donghua University

1209126@mail.dhu.edu.cn

Xiu Susie Fang†
Donghua University
xiu.fang@dhu.edu.cn

ABSTRACT
Recently, Graph Neural Networks (GNNs) have become a main-
stream recommender system method, where it captures high-order
collaborative signals between nodes by performing convolution
operations on the user-item interaction graph to predict user pref-
erences for different items. However, in real scenarios, the user-
item interaction graph is extremely sparse, which means numer-
ous users only interact with a small number of items, resulting in
the inability of GNN in learning high-quality node embeddings.
To alleviate this problem, the Graph Contrastive Learning (GCL)-
based recommender system method is proposed. GCL improves
embedding quality by maximizing the similarity of the positive
pair and minimizing the similarity of the negative pair. However,
most GCL-based methods use heuristic data augmentation methods,
i.e., random node/edge drop and attribute masking, to construct
contrastive pairs, resulting in the loss of important information.
To solve the problems in GCL-based methods, we propose a novel
method, Candidate-aware Graph Contrastive Learning for Recom-
mendation, called CGCL. In CGCL, we explore the relationship
between the user and the candidate item in the embedding at dif-
ferent layers and use similar semantic embeddings to construct
contrastive pairs. By our proposed CGCL, we construct structural
neighbor contrastive learning objects, candidate contrastive learn-
ing objects, and candidate structural neighbor contrastive learning
objects to obtain high-quality node embeddings. To validate the
proposed model, we conducted extensive experiments on three
publicly available datasets. Compared with various state-of-the-
art DNN-, GNN- and GCL-based methods, our proposed CGCL
achieved significant improvements in all indicators1.

CCS CONCEPTS
• Information systems → Recommender systems.

∗Both authors contributed equally to this research.
†Corresponding author
1https://github.com/WeiHeCnSH/CGCL-Pytorch-master

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00
https://doi.org/10.1145/3539618.3591647

KEYWORDS
Recommendation System, GraphNeural Network, Contrastive Learn-
ing, Candidate.

ACM Reference Format:
Wei He, Guohao Sun, Jinhu Lu, and Xiu Susie Fang. 2023. Candidate–aware
Graph Contrastive Learning for Recommendation. In Proceedings of the
46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM,
Taipei, Taiwan, 10 pages. https://doi.org/10.1145/3539618.3591647

1 INTRODUCTION
As an efficient method of information filtering, the recommender
system can discover favorite items for users from massive data
according to their requirements [23] and is widely applicable in
news [38], advertising [14], e-commerce [49, 50], and other fields.
The main task of recommender systems is predicting whether the
user will interact with the item. In graph-based recommendation
scenario, it can be regarded as a kind of link prediction problem [29].
As a famous method in graph-based tasks, Graph neural networks
(GNN) have made significant progress with their powerful represen-
tation learning capabilities, such as node classification [19] / link
prediction [43] / graph classification [42], etc. Bymodeling the inter-
action data as a graph (user-item interaction graph [2, 3, 9, 16, 34],
heterogeneous graph [13], and knowledge graph [28, 33]), these
GNN-based methods stack multilayer convolution to iteratively ag-
gregate information from the local neighbor nodes to enrich the em-
bedding of nodes. However, these GNN-based methods heavily rely
on explicit supervision signals during training, which requires nu-
merous labeled data [40, 47]. , and real-world user-item interaction
records are often implicit (e.g., clicking, browsing, etc.), sparse, and
noisy, resulting in a lack of explicit supervision signals [15, 26, 39].
Due to these limitations, GNN-based methods are unable to learn
high-quality node embeddings.

In the past few years, contrastive learning (CL) has been applied
in many scenarios, such as Computer Vision (CV) [7], and graph
data mining [5]. CL can extract features of data from unlabeled
data for the improvement of downstream tasks [21]. To solve the
data sparsity problem in recommender systems, some researchers
[15, 37, 39, 46] realize that combining GNN and CL can gener-
ate higher-quality recommendations for users. Therefore, Graph
Contrastive Learning (GCL)-based recommender system methods
are proposed. The key to GCL is generating appropriate anchors,
and positive and negative instances through the view generator.
GCL minimizes mutual information, such that, in the embedding
space, anchors are close to positive instances and far away from
negative instances to improve the quality of node embeddings. At

1670

https://doi.org/10.1145/3539618.3591647
https://doi.org/10.1145/3539618.3591647
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539618.3591647&domain=pdf&date_stamp=2023-07-18

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wei He, Guohao Sun, Jinhu Lu, and Xiu Susie Fang

User

1-Hop 2-Hop 3-Hop

Candidate

Item

Other Item

0-Hop

Figure 1: Illustration of the relationship between the user
and the candidate item at different layers, where the blue
line indicates the distance that needs to be pulled in the
embedding space and vice versa in orange.

present, most GCL-based methods use heuristic-based view genera-
tors to generate instances. For example, SGL [39] generates positive
instances through node/edge drop and random walk. But these
methods still face the following two main problems: (1) Data aug-
mentation with random perturbations, such as random node/edge
drop, random walk, and diffusion, etc., changes the structure of the
graph and cannot preserve semantic information well [6, 15, 37, 46],
which makes it easy to discard important information or introduce
noise and thus, resulting in poor results. (2) The heuristic-based data
augmentation strategy is not universal, it requires manual interven-
tion, and selects the appropriate augmentation strategy according
to the specific application scenario, which limits the adaptation
range of the model [5, 45, 46, 51]. To solve the above-mentioned
problems, some scholars [15, 46] try to study view generators to
avoid structural perturbation. They propose to construct the con-
trastive pairs from the semantic space and the structure and use
the supervision signal provided by the context of the nodes.

Although some improvements have been made by GCL-based
methods, they ignore the relationship between the user and the can-
didate item at different layers, which limits their performance. In
specific, these GCL-based methods only construct contrastive pairs
from the perspective of structural perturbations [21, 37, 39, 41, 45]
, node similarity [5, 15, 51], or graph structure [20] and ignore the
relationship between the different layer embeddings of the user
and candidate item. in the embedding space, the embeddings with
similar semantic information should be closer to each other than
embeddings without similar semantic information. Take Figure 1
as an example, drumstick should be close to cola and watermelon
and away from books and headphones in the embedding space
because drumsticks, cola, and watermelon belong to the same class
of the food. Establishing the connection between the user and the
candidate item at different layers can better model the interest of
the user and the characteristics of the item, and can better explore
the intention of user interaction with the item at a finer granu-
larity. By doing so, the collaborative signal between nodes can be
effectively extracted. Therefore, to model a better relationship be-
tween the user and the candidate item, we propose a novel graph

contrastive learning method, called Candidate-aware Graph con-
trastive Learning for Recommendation (CGCL). In summary, the
main contributions can be summarized as follows:

• To model the better contrastive pairs, we propose to select
the anchors, positive instances, and negative instances for
contrastive learning objects from the embeddings of different
layer of the user and the candidate item based on semantic
similitude. To the best of our knowledge, we are the first to
explore the relationship between the user and candidate item
at different embedding layers for graph contrastive learning.

• In CGCL, we propose structured neighbor contrastive learn-
ing loss objects, the candidate contrastive learning loss ob-
jects, and the candidate structure neighbor contrastive learn-
ing loss objects to extract the low-order and high-order re-
lationship between the user and the candidate item. The
quality of the node embeddings effectively improved.

• We conduct extensive experiments on three publicly avail-
able datasets, and the results reveal that the propose CGCL
can significantly improve the performance of recommen-
dation, surpassing the state-of-the-art DNN-, GNN-, and
GCL-based methods.

2 RELATEDWORK
In this section, we briefly review graph neural networks and graph
contrastive learning for the recommendation.

2.1 Graph neural networks
Recently, graph neural networks have been introduced into rec-
ommender systems and have made significant progress. GCMC
[29] extracts the information of first-order neighbor nodes through
the autoencoder. In contrast, NGCF [34] extracts the high-order
connection between the user and the item by propagating the em-
bedding of nodes in the graph. Compared with NGCF, LightGCN [9]
simplifies NGCF by removing nonlinearity activation and feature
transformation, which can overcome the problems faced by GNN,
e.g., over-smoothing, etc. To accurately model user intent, DGCF
[35] disentangles the representation of the item and user through
maximum mutual information. MCCF [36] identifies potential com-
ponents by decomposing edges into multiple latent spaces at the
node level and uses the combiner to automatically determine the
importance of different components to get the unified user and item
embedding. In addition, IMP-GCN [16] further enhances LighGCN
by clustering nodes with similar interests to avoid negative infor-
mation propagation. To avoid the information bottleneck of depth
GNN, GOTNet [2] establishes long-distance dependence between
the node and neighbor nodes through non-local attention. MIXGCF
[31] injects positive sample information into randomly sample
negative samples through Mixup technology to synthesize hard
negative samples, which effectively improves the quality of training
samples. UltraGCN [18] uses constraints to estimate embeddings
for nodes after infinite convolution operations. GFCF [25] proves
that the neighborhood-based methods, linear auto-encoders, and
low-rank matrix factorization are special cases of various classic
low-pass filters. Moreover, some works[10, 28, 33, 49, 50] try to take
into account information about candidates. But the relationship
between the user’s embedding and the candidate item’s embeddings

1671

Candidate–aware Graph Contrastive Learning for Recommendation SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

at different layers is overlooked. Therefore, due to the data sparsity
problem, these GNN-based methods cannot learn high-quality node
embeddings, resulting in suboptimal recommendations.

2.2 Graph Contrastive learning
Contrastive learning (CL) has attracted wide attention in CV [7],
and other fields. It effectively improves the embedding quality by
minimizing the mutual information of positive pairs. As a typical
self-supervise learning method, contrastive learning does not re-
quire manual labeling and can mine the intrinsic characteristics
of data [14, 32] to improve the downstream task. Combining the
advantages of GNN and CL, Graph contrastive learning, GCL-based
recommender system methods are proposed, which can effectively
alleviate the data sparsity problem and better model the interests
of users. For example, to design a better loss function, SimpleX [17]
proposes the cosine similarity contrastive learning loss to optimize
the user and the item, but only the first-order neighbor nodes of the
user are utilized. SGL [39] is a heuristic-based data augmentation
method for generating contrastive instances. Specifically, SGL uses
node/edge drop, and random walk to generate positive instances.
AutoGCL[45] designs a view generation generator for each data
augmentation method that adaptively selects node drop and at-
tribute masking at the node level, which overcomes the adaptability
problem of data augmentation. GCA [51] proposes a joint adaptive
data augmentation method in topology and node attribute level by
removing edge and mask features to provide different context infor-
mation for nodes in different views, which effectively explores the
impact of different data augmentation methods. However, random
edge/node drop and perturbation may lead to the loss of important
information. Therefore, CGI [37] proposes to construct the more
practical contrastive instances by selectively dropping edge/node.
Differing from SGL, NCL [15] takes similar semantic prototypes
in the embedding space and the structure neighbors as positive
instances. Moreover, SimGCL [46] experimentally found that the
contribution of data augmentation to SGL was very small and then
propose to add noise to each layer embedding to generate posi-
tive instances. In order to avoid manually constructing contrastive
instances, SimGRACE [41] uses different graph encoders as the
view generator and compares the semantic similarity between the
instances obtained after perturbing two different encoders, while
LightGCL [1] uses matrix factorization to reconstruct the user-item
interaction graph as the contrastive instances.

However, the current methods are limited by the quality of the
instances generated, thus they are often complex, cumbersome, in-
efficient, and difficult to train [1, 39, 40, 46, 47]. These disadvantages
limit them to obtain high-quality node embeddings.

3 PROBLEM AND BACKGROUND
In this section, we will give the definition of the problem and a brief
introduction to GNN. Meanwhile, we also introduce the LightGCN
[9] backbone.

3.1 Preliminary
Given the set of usersU = {𝑢} and items I = {𝑖}. Let I+ and I−

(i.e., I−I+) denote items that users have interacted with and items

that have not observed interaction records, respectively. The user-
item interaction matrixA ∈ R𝑀×𝑁 can be constructed according to
historical interaction records, where𝑀 and 𝑁 indicate the number
of users and items, respectively. Set 𝐴𝑢𝑖 ∈ {0, 1} = 1 (observed
item) if user 𝑢 has an interaction with item 𝑖 . Otherwise, Set 𝐴𝑢𝑖 ∈
{0, 1} = 0 (unobserved). Construct the user-item interactions as a
graph G (V, E), where the node set V = U ∪ I involves all users
and items, and the edge set E = {𝐴𝑢𝑖 |𝐴𝑢𝑖 = 1} represents observed
interactions. CGCL is to predict whether the user 𝑢 will interact
with the unobserved item 𝑖 by the given input graph G.

3.2 Graph neural network in recommendation
We will briefly introduce GNN. Specifically, GNN has several key
components: embedding, aggregation, propagation, readout, pre-
diction, and optimization.

3.2.1 Embedding. A vector with dimension 𝑑 is used to represent
the initialization embedding of the user (item) 𝑒 (0)𝑢 ∈ R𝑑 (𝑒 (0)

𝑖
∈ R𝑑)

, where 𝑑 is the size of the embedding, which can be obtained via
embedding lookup tables and can be represented as follows:

𝑒
(0)
𝑢 = 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑢) , 𝑒

(0)
𝑖

= 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑖) . (1)

where 𝑢 and 𝑖 represent the IDs of the user and item, respectively.

3.2.2 Aggregation. GNN aggregates the information of neighbor-
ing nodes by performing convolution operations. The embedding
of neighboring nodes in the 𝑙 layer can be represented as follows:

𝑒
(𝑙)
𝑢,𝑁

= 𝐴𝑔𝑔

(
𝑒
(𝑙−1)
𝑖

, 𝑖 ∈ 𝑁𝑢

)
,

𝑒
(𝑙)
𝑖,𝑁

= 𝐴𝑔𝑔

(
𝑒
(𝑙−1)
𝑢 , 𝑢 ∈ 𝑁𝑖

)
.

(2)

where 𝑒 (𝑙)𝑢 and 𝑒 (𝑙)
𝑖

indicate the 𝑙-layer embedding redefined by the
user𝑢 and item 𝑖 , respectively, and𝑁𝑢 and𝑁𝑖 indicate the neighbors
that directly interact with the user and item, respectively.

3.2.3 Propagate. GNN performs information propagation that uses
the embedding of aggregate neighbor nodes to update its own
embedding, which can be represented as follows:

𝑒
(𝑙)
𝑢 = 𝑃𝑟𝑜𝑝

(
𝑒
(𝑙−1)
𝑢 , 𝑒

(𝑙)
𝑢,𝑁

)
,

𝑒
(𝑙)
𝑖

= 𝑃𝑟𝑜𝑝

(
𝑒
(𝑙−1)
𝑖

, 𝑒
(𝑙)
𝑖,𝑁

)
.

(3)

3.2.4 Readout. After 𝐿 time convolutional operations, GNN adopts
the pooling techniques to aggregate the embeddings of nodes at
different depths to generate the final representation of the user and
item, which can be represented as follows:

𝑒𝑢 = 𝑅𝑒𝑎𝑑𝑜𝑢𝑡

(
𝑒
(0)
𝑢 , · · · , 𝑒 (𝐿)𝑢

)
,

𝑒𝑖 = 𝑅𝑒𝑎𝑑𝑜𝑢𝑡

(
𝑒
(0)
𝑖

, · · · , 𝑒 (𝐿)
𝑖

)
.

(4)

The readout function can be weight summation [9, 34], etc.

3.2.5 Prediction. The likelihood of interaction between the user 𝑢
and the item 𝑖 can be represented as follows:

𝑦𝑢𝑖 = 𝑓 (𝑒𝑢 , 𝑒𝑖) . (5)

where 𝑓 (·) is a scoring prediction function be used to calculate the
probability of interaction between the user 𝑢 and the item 𝑖 , which
can be the inner product [9, 16, 34], MLP[27], etc.

1672

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wei He, Guohao Sun, Jinhu Lu, and Xiu Susie Fang

3.2.6 Optimize. The parameters of the model are optimized by
minimizing the loss function, which can be represented as follows:

L𝑅𝑒𝑐 = 𝑔 (𝑦𝑢𝑖 , 𝑦𝑢𝑖) . (6)

For the recommendation task, the loss function can be Bayesian
Personalized Ranking (BPR) loss [22], Triplet loss [24], etc.

3.3 LightGCN Backbone
In CGCL, we use LightGCN [9] as the backbone of GNN. As the
GCN architecture introduce earlier, LighGCN uses IDs mapping
to obtain the embedding of nodes. However, complex nonlinear
activation and feature transformation are not valid for one-hot
encode IDs, they are omitted in LightGCN. The aggregation process
of LightGCN can be represented as follows:

𝑒
(𝑙+1)
𝑢,𝑁

=
∑
𝑖∈𝑁𝑢

1√
|𝑁𝑢 | |𝑁𝑖 |

𝑒
(𝑙)
𝑖

,

𝑒
(𝑙+1)
𝑖,𝑁

=
∑
𝑢∈𝑁𝑖

1√
|𝑁𝑖 | |𝑁𝑢 |

𝑒
(𝑙)
𝑢 .

(7)

In LightGCN, since the self-node already appears in the graph, the
self-loop is further omitted. The update node embedding can be
directly represented using the embedding of neighboring nodes. The
process of propagating information can be represented as follows:

𝑒
(𝑙+1)
𝑢 = 𝑒

(𝑙+1)
𝑢,𝑁

, 𝑒
(𝑙+1)
𝑖

= 𝑒
(𝑙+1)
𝑖,𝑁

. (8)

After obtaining the node embeddings at each layer, LightGCN lever-
ages average pooling to generate the final embedding of the nodes.
The readout function of LightGCN can be represented as follows:

𝑒𝑢 = 1
𝐿+1

∑𝐿
𝑙=0 𝑒

(𝑙)
𝑢 , 𝑒𝑖 =

1
𝐿+1

∑𝐿
𝑙=0 𝑒

(𝑙)
𝑖

. (9)

The likelihood of interaction between the user 𝑢 and the item 𝑖 can
be represented as follows:

𝑦𝑢𝑖 = 𝑒𝑇𝑢 𝑒𝑖 . (10)

The widely used BPR [22] loss function is adopted to optimize
the model, which assumes that positive samples score higher than
negative samples, which can be represented as follows:

L𝑅𝑒𝑐 =
1
|O|

∑︁
(𝑢,𝑖, 𝑗) ∈O

− log 𝜎
(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
. (11)

where O indicates the training set, 𝑢 indicates the user, 𝑖 indicates
the positive sample, 𝑗 indicates the randomly select the negative
sample from items not interacting with the user 𝑢, and 𝜎 indicates
the sigmoid activation function.

4 THE PROPOSED METHOD
In this work, we aim to explore the relationship between the user
and the candidate item to improve the quality of node embeddings
learned by GNN. The proposed CGCL model is shown in Figure
2, which consists of three components: Firstly, to establish the
relationship between structural neighbors and the center node,
we propose the structural neighbor contrastive learning objects in
section 4.1. Secondly, to establish the relationship between users
and candidate items, we propose the candidate contrastive learning
objects in section 4.2. Thirdly, to establish the relationship between
the structural neighbors of users and candidate items, we propose
the candidate structural neighbor contrastive learning objects in
section 4.3. The details of each component are described below.

Figure 2: The proposed CGCLmethod, where the circle repre-
sents the user, the square represents the item, and the triangle
represents the embedding at each layer. The subgraph on the
left is the proposed three contrastive learning objects on the
user side, and the subgraph on the right is the GNN backbone.

4.1 Contrastive Learning with Structural
Neighbors

In this subsection, we will introduce structural neighbor contrastive
learning objects, which correspond to part A in Figure 2. The user-
item interaction graph is a typical bipartite graph that contains
two types of nodes (the user node and the item node). The types of
neighbor nodes in each layer are the same. As shown in Figure 1, on
the user side, nodes at the even layer (0, 2, · · ·) are user types, and
nodes at the odd layer (1, 3, · · ·) are item types. These homogeneous
user (item) nodes are connected through convolution propagation.
They can be considered to have similar semantic information and
are closer to each other in the embedding space.

Therefore, similar to [15], we take the embedding of the cen-
tral node itself as the anchor, the homogeneous neighbor node
embedding of the central node as the positive instances, and the
homogeneous neighbor node embedding of other central nodes as
the negative instances. Based on the InfoNCE [30] loss, we pro-
pose the structural contrastive learning objects to minimize the
distance between homogeneous neighbor nodes. The structural
neighbor contrastive learning loss function on the user side can be
represented as follows:

L𝑈
𝑆 =

∑︁
𝑢∈U

− log
exp

(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑢 , 𝑒

(0)
𝑢

)
/𝜏

)
∑

𝑣∈U exp
(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑢 , 𝑒

(0)
𝑣

)
/𝜏

) . (12)

where 𝑒 (𝑘)𝑢 is the embedding of the 𝑘-layer convolution on the user
side, 𝑘 is the even number, 𝑠𝑖𝑚 indicates cosine similarity, and 𝜏 is
the temperature hyperparameter of softmax.

1673

Candidate–aware Graph Contrastive Learning for Recommendation SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Similarly, the structural neighbor contrastive learning loss func-
tion on the item side can be represented as follows:

L𝐼
𝑆 =

∑︁
𝑖∈I

− log
exp

(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑖

, 𝑒
(0)
𝑖

)
/𝜏

)
∑

𝑗∈I exp
(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑖

, 𝑒
(0)
𝑗

)
/𝜏

) . (13)

where 𝑒 (𝑘)
𝑖

represents the embedding of the 𝑘-layer convolution
on the item side. Combining these two losses, we get the objective
function of structural neighbor contrastive learning loss as follows:

L𝑆 = 𝛼L𝑈
𝑆 + (1 − 𝛼) L𝐼

𝑆 . (14)

where 𝛼 is the hyperparameter to control the strengths of two
different structural neighbor contrastive learning objects.

4.2 Contrastive Learning with Candidate
In this subsection, we will introduce candidate contrastive learning
objects, which correspond to part B of Figure 2. For the given user
𝑢 and candidate item 𝑖 , the goal of the recommender system is to
predict whether there will be an interaction between them. Accord-
ing to the basic assumption of the recommender system, Similar
users may interact with the same item. If user 𝑢 and candidate
item 𝑖 has a higher interaction possibility, then the user should be
similar to the historical interaction user of the candidate item in the
embedding space. In addition, The user 𝑢 shouldn’t be similar to
historical interaction users of other items in the embedding space.

Therefore, on the user side, we take the embedding of user 𝑢 as
the anchor, the first-order neighbor node embedding of the candi-
date item 𝑖 as the positive instances, and the first-order neighbor
node embedding of the other items as the negative instances. The
candidate contrastive learning loss on the user side can be repre-
sented as follows:

L𝑈
𝐶 =

∑︁
𝑖∈I

− log

exp

(
𝑠𝑖𝑚

(
𝑒

(
𝑘
′)

𝑖
, 𝑒

(0)
𝑢

)
/𝜏

)
∑

𝑣∈U exp
(
𝑠𝑖𝑚

(
𝑒
(𝑘 ′)
𝑖

, 𝑒
(0)
𝑣

)
/𝜏

) . (15)

where 𝑒

(
𝑘
′)

𝑖
represents the embedding of the item-side at the 𝑘

′
-

layer, and 𝑘
′
is the odd number.

Similarly, on the candidate item side, the historical interaction
items of user 𝑢 are closer to the candidate item 𝑖 in embedding
space, while the historical interaction items of other users are far
away from the candidate item 𝑖 .

Therefore, we use the embedding of the candidate item 𝑖 as the
anchors, the first-order neighbor node embedding of user 𝑢 as the
positive instances, and the first-order neighbor node embedding of
any users different from 𝑢 as the negative instances. The candidate
contrastive learning loss on the item side can be represented as
follows:

L𝐼
𝐶 =

∑︁
𝑣∈U

− log

exp

(
𝑠𝑖𝑚

(
𝑒

(
𝑘
′)

𝑢 , 𝑒
(0)
𝑖

)
/𝜏

)
∑

𝑗∈I exp
(
𝑠𝑖𝑚

(
𝑒
(𝑘 ′)
𝑢 , 𝑒

(0)
𝑗

)
/𝜏

) . (16)

where 𝑒

(
𝑘
′)

𝑢 represents the embedding of the user-side at the 𝑘
′
-

layer. Combining these two losses above, we get the objective func-
tion of candidate contrastive learning loss as follows:

L𝐶 = 𝛼L𝑈
𝐶 + (1 − 𝛼) L𝐼

𝐶 . (17)

4.3 Contrastive Learning with Candidate
Structure Neighbors

In this subsection, we will introduce candidate structure neighbor
contrastive learning objects, which corresponds to part C of Figure
2. The structural neighbors of users (items) contain items (users)
with similar interests. The second-order neighbors of the user and
the first-order neighbors of the item are the same type of nodes
(type of user). They will be connected when performing multi-layer
convolution, and there is a long-distance dependence relationship
between them. If user𝑢 may interact with candidate item 𝑖 , then the
user-type neighbor nodes of the user 𝑢 are closer to the user-type
neighbor nodes of the candidate item 𝑖 in the embedding space.
Meanwhile, the item-type neighbor nodes of the user 𝑢 are also
close to the item-type neighbor node of the item 𝑖 in the embedding
space. Therefore, we choose the homogeneity neighbor node of the
user (item) as the positive instances of the item (user). In addition,
the relationship between the center node and the neighbor nodes
that are farther away from the center node is weak, because this
kind of relationship contains more noise and irrelevant information.

Therefore, we use the embeddings of neighbor nodes that are
closer to the center node as the anchors, the embeddings of neighbor
nodes that are farther away from the center node as the positive
instances, and the embeddings of structural neighbors of other
interaction pairs that are farther away from the center node as the
negative instances. The candidate structure neighbor contrastive
learning loss on the user side can be represented as follows:

L𝑈
𝐶𝑆 =

∑︁
𝑖∈I

− log

exp

(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑖

, 𝑒

(
𝑘
′)

𝑢

)
/𝜏

)
∑

𝑣∈U exp
(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑖

, 𝑒
(𝑘 ′)
𝑣

)
/𝜏

) . (18)

Similarly, on the item side, we use the embeddings of structure
neighbor nodes (user types) of the candidate item as the anchors,
the embeddings of neighbor nodes (item types) of the user as the
positive instances, and the embeddings of neighbor nodes (item
types) of other users as the negative instances. The candidate struc-
ture neighbor contrastive learning loss on the item side can be
represented as follows:

L𝐼
𝐶𝑆 =

∑︁
𝑣∈U

− log

exp

(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑢 , 𝑒

(
𝑘
′)

𝑖

)
/𝜏

)
∑

𝑗∈I exp
(
𝑠𝑖𝑚

(
𝑒
(𝑘)
𝑢 , 𝑒

(𝑘 ′)
𝑗

)
/𝜏

) . (19)

Combining these two losses above, we get the objective function of
candidate structure neighbor contrastive learning loss as follows:

L𝐶𝑆 = 𝛼L𝑈
𝐶𝑆 + (1 − 𝛼) L𝐼

𝐶𝑆 . (20)

1674

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wei He, Guohao Sun, Jinhu Lu, and Xiu Susie Fang

4.4 Optimization with CGCL
Same as the other methods [15, 37, 39, 46], we treat three contrastive
learning losses as auxiliary losses and use the multi-task learning
strategy to jointly optimize the BPR [22] loss and the contrastive
learning loss function. So the total loss function can be represented
as follows:

L𝐶𝐺𝐶𝐿 = L𝑅𝑒𝑐 + _1L𝑆 + _2L𝐶 + _3L𝐶𝑆 + _4 ∥Θ∥22 . (21)

where _1, _2, and _3 are hyperparameters to control the weights of
three contrastive learning losses, respectively. _4 is the regulariza-
tion coefficient, and Θ indicates the trainable parameters.

Algorithm 1 Candidate–aware Graph Contrastive Learning
Input: User-Item bipartite graph G = {U ∪ I, E}, training dataset
X;
Parameter: Trainable parameters {𝑒}𝑢∈U , {𝑒}𝑖∈I ,
Hyperparameter 𝛼, _1, _2, _3, _4;
Output: Trained Model F (𝑒𝑢 , 𝑒𝑖 |Θ,G);
1: while CGCL Not Convergence do
2: for 𝑥 in 𝐷𝑎𝑡𝑎𝑙𝑜𝑎𝑑𝑒𝑟 (X) do
3: // Forward propagation
4: 𝑒𝑢 , 𝑒𝑖 = 𝐺𝑁𝑁

(
G, 𝑒 (0)𝑢 , 𝑒

(0)
𝑖

)
;

5: // Calculate Loss
6: Calculate BPR loss L𝑅𝑒𝑐 ;
7: Calculate contrastive learning with structural neighbors

loss L𝑆 ;
8: Calculate contrastive learning with candidate loss L𝐶 ;
9: Calculate contrastive learning with candidate structure

neighbors loss L𝐶𝑆 ;
10: Calculate total loss L𝐶𝐺𝐶𝐿 ;
11: // Back propagation
12: 𝑒𝑢 = 𝑒𝑢 − 𝛼 𝜕L

𝜕𝑒𝑢
;

13: 𝑒𝑖 = 𝑒𝑖 − 𝛼 𝜕L
𝜕𝑒𝑖

;
14: end for
15: end while
16: return F (𝑒𝑢 , 𝑒𝑖 |Θ,G);

5 EXPERIMENTS
In this section, we will conduct extensive experiments on three
publicly available datasets and compare the performance with state-
of-the-art DNN-, GNN- and GCL-based methods to validate our
proposed model, and our goal is to answer the following questions:

• Q1: How does the proposed CGCL perform compared to
state-of-the-art DNN-, GNN- and GCL-based methods?

• Q2: How do different parameter settings affect the perfor-
mance of CGCL?

• Q3: How do data of different sparsity affect the performance
of CGCL?

• Q4: How do different parts of CGCL contribute to the final
performance?

• Q5: How does CGCL perform when applied to other GNN
backbones?

• Q6: What is the effect of CGCL on improving the embedding
distribution of nodes?

DataSets #Users #Items #Interactions #Density
Yelp 45,478 30,709 1,777,765 0.00127

Gowalla 29,859 40,989 1,027,464 0.00084
Books 58,145 58,052 2,517,437 0.00075

Table 1: Statistics of the datasets

5.1 Experimental Setup
5.1.1 Datasets. To fairly evaluate the proposed CGCL, we exper-
iment on the following three publicly available datasets, Yelp 2,
Gowalla 3, Amazon Books 4. These datasets are provided by NCL
[15], and to ensure a fair comparison, we follow the same treatment
as NCL. The statistics of the dataset are summarized in Table 1.
Similar to NCL, the training, validation, and test sets are divided
into 8:1:1, respectively. The normal distribution is used to randomly
sample one negative sample for each positive sample to form a
training pair.

5.1.2 Baseline Models. We compare CGCL with the state-of-the-
art DNN (NeuMF, DMF), GNN (GCMC, NGCF, LightGCN), and
GCL (SGL, Simplex, NCL) methods. These methods are described
as follows:
NeuMF [11]: NeuMF integrates the matrix decomposition and
multilayer perceptron (MLP) to extract the low-order and high-
order features of the nodes to establish a complex relationship
between the user and the item.
DMF [44]: DMF simulates matrix decomposition directly on the
user-item interaction matrix using multi-layer neural networks.
GCMC [29]: GCMC treats matrix completion as a link prediction
problem on the graph, and the user-item interaction graph was
reconstructed using an auto-encoder.
NGCF [34]: NGCF propagates embeddings in the user-item in-
teraction graph to establish the high-order connection between
nodes.
LighGCN [9]: LightGCN simplifies the NGCF by removing non-
linearity activation, feature transformations, and self-loop.
SimpleX [17]: SimpleX aggregates the embedding of the user and
the first-order neighbor node by weight summation and uses cosine
contrastive loss to optimize the embedding of the user and the item.
SGL [39]: SGL constructs different contrastive learning views by
node drop, edge drop, and randomwalk in the user-item interaction
graph to improve the performance of the recommender system. As
with NCL, we use the best SGL-ED as the implementation of SGL.
NCL [15]: NCL uses LightGCN as the backbone and considers the
homogeneous structure neighbors and semantic prototypes of the
nodes as the positive instances of contrastive learning.

5.1.3 Metrics. Same as other GNN-basedmethods [9, 15, 16, 34, 39],
we use two widely used metrics to evaluate the performance of
the TOP-N recommendation: Recall@N and NDCG@N, where N is
set to 20 and 50, respectively. We use the all-ranking protocol to
calculate all metrics [8], and treat all items that the user has not
interacted with as the negative sample.

2https://www.yelp.com/dataset
3https://snap.stanford.edu/data/loc-gowalla.html
4http://jmcauley.ucsd.edu/data/amazon/

1675

Candidate–aware Graph Contrastive Learning for Recommendation SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

DataSet Yelp Gowalla Amazon-Books
Metric Recall NDCG Recall NDCG Recall NDCG
Method 20 50 20 50 20 50 20 50 20 50 20 50
NeuMF 0.0572 0.1457 0.0328 0.0510 0.1167 0.2255 0.0753 0.0969 0.0530 0.1216 0.0339 0.0486
DMF 0.0660 0.1253 0.0353 0.0507 0.1025 0.1706 0.0591 0.0759 0.0542 0.1007 0.0293 0.0414
GCMC 0.0908 0.1690 0.0494 0.0696 0.1472 0.2410 0.0810 0.1038 0.0868 0.1553 0.0481 0.0658
NGCF 0.0953 0.1764 0.0519 0.0729 0.1576 0.2546 0.0893 0.1130 0.0902 0.1598 0.0495 0.0676

LightGCN 0.1218 0.2123 0.0690 0.0741 0.1920 0.2988 0.1133 0.1192 0.1201 0.2002 0.0691 0.0737
SGL-ED 0.1335 0.2177 0.0808 0.1028 0.2153 0.3277 0.1281 0.1558 0.1418 0.2172 0.0866 0.1065
SimpleX 0.1221 0.2044 0.0728 0.0941 0.1555 0.2601 0.0784 0.1040 0.1339 0.2143 0.0790 0.1001
NCL 0.1394 0.2258 0.0816 0.1044 0.2147 0.3299 0.1260 0.1543 0.1389 0.2209 0.0818 0.1034
CGCL 0.14570.14570.1457 0.24040.24040.2404 0.08490.08490.0849 0.10970.10970.1097 0.22050.22050.2205 0.33910.33910.3391 0.12920.12920.1292 0.15830.15830.1583 0.15380.15380.1538 0.24000.24000.2400 0.09200.09200.0920 0.11470.11470.1147

Imp (%). 4.52 6.47 4.04 5.08 2.42 2.79 0.86 1.60 8.46 8.65 6.24 7.70
Table 2: The overall performance comparison of the proposed CGCLmodel with the state-of-the-art DNN-, GNN-, and GCL-based
baselines. The optimal value is bolded and the suboptimal value is underlined.

5.1.4 Implementation Details. All baselines and our proposed CGCL
are implemented using Recbole [48]. In Recbole, the loss function
of GCMC [29] is replaced by the cross-entropy loss function. To
ensure a fair comparison, all parameters are initialized with the
default Xavier [4], and the embedding size and mini-batch are set
to 64 and 2048, respectively. The GNN backbone of the GCL-based
method defaults to LightGCN, and model depths are set to 3. The
default learning rate is 1e-3, all methods are optimized using Adam
[12], and hyperparameters are carefully searched for all baselines.
Similar to [9, 15, 34], we carefully adjust the parameters _1, _2,
and _3 in [1𝑒 − 4, 1𝑒 − 8], _4 is set to 1e-4, and 𝜏 in [0.05, 0.2]. The
embedding farther away from the center contains more noise and
irrelevant information, which can introduce false learning signals.
Therefore, The 𝑘

′
and 𝑘 are set to 1 and 2, respectively. The early

stop strategy is used to avoid overfitting. Where, we use Recall@20
as an indicator and stop training after the indicator drops 10 con-
secutive rounds below the optimal value on the validation set. The
average results of five experiments on the test set are reported.

5.2 Performance Comparison with
State-of-the-Arts (Q1)

The detailed performance comparison of the proposed CGCL and
other state-of-the-art DNN-, GNN-, and GCL-based methods on
three datasets is reported in Table 2. Some conclusions can be drawn
from these results.

Our proposed CGCL achieves the best performance on all datasets,
significantly exceeding state-of-the-art DNN-, GNN-, and GCL-
based methods. For example, CGCL achieves an absolute improve-
ment of more than 1% in Recall@50 compared to the two strongest
baselines (SGL and NCL) on all datasets. We think these baselines
are limited by the following shortcomings: (1) The DNN-based
methods only use the information of the node self (NeuMF) or
the first-order neighbor node (DMF), which cannot capture the
high-order connection between the nodes, resulting in difficulty
extracting enough information from the user-item interaction. (2)
The GNN-based methods are limited by the data sparsity problem
and cannot learn high-quality node embeddings. (3) The existing

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

R
ec
al
l@

20

 CGCL
 LightGCN

(a) Yelp.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.19

0.20

0.21

0.22

R
ec
al
l@

20

 CGCL
 LightGCN

(b) Gowalla.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

R
ec
al
l@

20

 CGCL
 LightGCN

(c) Amazon-Books.

Figure 3: Performance Comparison w.r.t. Different Balance
Coefficient 𝛼 .

GCL-based methods don’t explore the relationship between the
user and the candidate item at different layers. In addition, they
construct inappropriate contrastive pairs, such that they are unable
to reasonably optimize the embedding of nodes. These experimen-
tal results sufficiently prove the superiority of CGCL. We speculate
that CGCL can optimize the quality of node embeddings more rea-
sonably by establishing the relationship between the embeddings
of the user and candidate item at different layers, such that the
candidate item with high interaction possibilities is close to the
user and the item with low interaction probabilities is far away.

5.3 Parameter Analyses (Q2)
In this section, we will research the effects of different parameters
(Balance Coefficient 𝛼 and temperature 𝜏) on CGCL.

5.3.1 Impact of the Balance Coefficient 𝛼 . To study the effect of the
balance coefficient 𝛼 , we adjust the range of 𝛼 , and the results are
shown in Figure 3. We can observe the following phenomena: (1)
In most cases, when the balance coefficient 𝛼 is around 0.5, CGCL
achieves the best performance because the appropriate balance
coefficient can help the user and the item learn better embeddings.
(2) When reducing the balance coefficient 𝛼 , that is, decreasing the
importance of user-side contrastive learning loss, we find that the
performance on the Yelp and Amazon-Books datasets decreased
significantly, which indicates that the user-side contrastive learning
loss is more important for GCCL than the item-side contrastive

1676

10959
高亮

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wei He, Guohao Sun, Jinhu Lu, and Xiu Susie Fang

0.05 0.075 0.1 0.125 0.15 0.175 0.2

0.10

0.11

0.12

0.13

0.14

0.15

R
ec
al
l@

20

 CGCL
 LightGCN

(a) Yelp.

0.05 0.075 0.1 0.125 0.15 0.175 0.2

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

R
ec
al
l@

20

 CGCL
 LightGCN

(b) Gowalla.

0.05 0.075 0.1 0.125 0.15 0.175 0.2

0.10

0.11

0.12

0.13

0.14

0.15

0.16

R
ec
al
l@

20

 CGCL
 LightGCN

(c) Amazon-Books.

Figure 4: Performance Comparison w.r.t. Different Tempera-
ture 𝜏 .

learning loss. (3) When increasing the balance coefficient 𝛼 , the
performance on the Yelp and Amazon-Books datasets stays sta-
ble, which can be explained by the following two aspects: (a) We
calculate evaluation metrics using the all-ranking protocol, which
searches for the most likely interact item from all unobserved items.
In this case, the embedding of the optimization items has less im-
pact on the results. (b) The first-order neighbor of the user is the
item-type node. Therefore, the item-type nodes are optimized in the
candidate contrastive learning objects, and success compensates
for the impact of the decreasing importance of the item-side con-
trastive learning loss. To conclude, CGCL can achieve good results
even under the influence of a large balance coefficient.

5.3.2 Impact of the Temperature 𝜏 . To study the effect of tempera-
ture 𝜏 on CGCL, we adjust the range of 𝜏 , and the results are shown
in Figure 4.We observe that the temperature 𝜏 has played a vital role
in the performance of CGCL. When the temperature 𝜏 is between
0.075 and 0.125, CGCL achieves the best results. Based on [32],
small temperature coefficient models can better focus on difficult
sample learning so that similar user (item) node embeddings are
separated from each other in the embedding space. But excessive
forcing to separate difficult samples can lead to the destruction of
underlying semantic structures. The high temperature will make it
difficult to separate hard negative instances from positive instances,
resulting in low-quality embeddings. Therefore, choosing an ap-
propriate temperature can make the embedding space distribution
more uniform and achieve better results.

5.4 Impact of Data Sparsity Levels (Q3)
The data sparsity problem severely limits the representation ability
of GNN. In this section, we will investigate whether the proposed
method can effectively alleviate this problem. Similar to [15], we
divide all users of the test set into five groups based on the number
of user interactions and kept the total number of user interactions
for each group the same. The results of LightGCN and CGCL on
five groups of users are shown in Figure 5. From the figure, we
can see that CGCL has achieved better results than LighGCN on
all user groups, which indicates that exploring the relationship be-
tween the user and candidate item can effectively alleviate the data
sparsity problem and enrich the semantic information of nodes. In
addition, we found that with the number of interactions decreasing,
CGCL achieve better results than LighGCN and made a greater
performance gain (e.g., an about 28% improvement on the Yelp and
Amazon-Books datasets in the G1 group), indicating that CGCL is
more suitable for sparse interacting data and can provide users with

G1 G2 G3 G4 G5
0

2

4

6

8

10

12

14

16

18

20

22

24 CGCL
 LightGCN

User Group

#U
se

rs
/1

e3

0.08

0.10

0.12

0.14

0.16

 R
ec

al
l@

20

(a) Yelp.

G1 G2 G3 G4 G5
0

2

4

6

8

10

12

14

16 CGCL
 LightGCN

User Group

#U
se

rs
/1

e3

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

 R
ec

al
l@

20

(b) Gowalla.

G1 G2 G3 G4 G5
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

 CGCL
 LightGCN

User Group

#U
se

rs
/1

e3

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 R
ec

al
l@

20

(c) Amazon-Books.

Figure 5: Performance Comparison (Recall@20) w.r.t. Dif-
ferent sparsity-level user groups on three different datasets
(The average number of interactions from the G1 group to
the G5 group are gradually increasing).

0 50 100 150 200 250
0

200

400

600

800

1000

tr
ai

ni
ng

 lo
ss

Epoch

 CGCL
 LightGCN

0 50 100 150 200 250

0.05

0.10

0.15

R
ec
al
l@

20

Epoch

 CGCL
 LightGCN

Figure 6: Training curves and test Recall@20 of LightGCN
and CGCL for the sparsest Amazon-Books dataset(Take one
result every five rounds)..

DataSet Yelp Gowalla Amazon-Books
Metric R@20 N@20 R@20 N@20 R@20 N@20

LightGCN 0.1218 0.069 0.1942 0.1123 0.1201 0.0691
O s 0.1328 0.0761 0.2028 0.1191 0.1236 0.0712
O c 0.1342 0.0768 0.2061 0.1195 0.1343 0.0780
O cs 0.1331 0.0755 0.2058 0.1202 0.1262 0.0729
W/o s 0.1327 0.0755 0.2056 0.1177 0.1259 0.0727
W/o c 0.1412 0.0824 0.2025 0.1184 0.1521 0.0910
W/o cs 0.1447 0.0846 0.2197 0.1291 0.1534 0.0908
All 0.1457 0.0849 0.2205 0.1292 0.1538 0.0920

Table 3: Ablation Experimental

a better recommendation in real-world scenarios. Figure 6 shows
the training curves of training loss and the result of Recall@20 on
the validation set. Due to page limitations, we only show results
for the sparsest dataset, Amazon Books. We found that CGCL took
fewer epochs to reach convergence than LighGCN. This is because
CGCL explores the relationship between the user and the candi-
date item, and the proposed contrastive learning objects can better
explore hard negative samples, providing a larger gradient during
training so that the speed of training is accelerated.

5.5 Ablation Experimental (Q4)
The proposed CGCL consists of three parts: (1) structural neighbor
contrastive learning objects, (2) candidate contrastive learning ob-
jects, and (3) candidate structured neighbor contrastive learning
objects. To verify the contribution of each part to the CGCL, we

1677

Candidate–aware Graph Contrastive Learning for Recommendation SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

DataSet Yelp Gowalla Amazon-Books
Metric R@20 N@20 R@20 N@20 R@20 N@20
NGCF 0.0953 0.0519 0.1576 0.0893 0.0902 0.0495
+CGCL 0.1084 0.0609 0.1812 0.1048 0.1259 0.0731
Imp(%). 13.75 17.34 14.97 17.36 39.58 47.68

LightGCN 0.1218 0.0690 0.1942 0.1123 0.1201 0.0691
+CGCL 0.1457 0.0849 0.2205 0.1292 0.1538 0.0920
Imp(%). 19.62 23.04 13.54 15.05 27.73 32.56

Table 4: Performance comparison w.r.t. different backbones.

make ablation experiments. The experimental results are reported
in Table 3. where O s, O c, and O cs refer only to retaining (1),
(2), and (3) from the model, respectively. Similarly, W/o s, W/o
c, and W/o cs refer to removing (1), (2), and (3) from the model,
respectively. We can find that removing or only retaining part of
the structure of the models can achieve better performance than
LighGCN on all datasets, which indicates that the three contrastive
learning objects proposed are all valid and can improve the quality
of node embeddings learned by LighGCN.W/o s obtains the per-
formance of preserving only a part of the structure of the model,
which indicates the interdependence between the different compo-
nents. In addition, we found that keeping two or all parts of the
model can achieve better results than using only one. We speculate
that using only one of the contrastive learning objects will lead
to the learned embeddings being too close together. In contrast,
using all the contrastive learning objects can make the embedding
distribution of the nodes more reasonable.

5.6 Different GNN Backbones (Q5)
To further verify the performance of CGCL, the influence of differ-
ent GNN backbones was analyzed. We compare the performance
with different GNN backbones. The results are reported in Table 4.
CGCL has greatly improved the performance on different GNNback-
bones, For example, on the Amazon-Books dataset, CGCL based on
the LightGCN backbone achieves an improvement of nearly 30%,
and CGCL based on the NGCF backbone achieved an improvement
of more than 40%. This is because the introduced contrastive learn-
ing objects can improve the embedding quality and alleviate the
disadvantages of GNN-based methods due to the lack of labeled
training data. In addition, we find that CGCL achieves better results
on the LightGCN backbone than on the NCGF backbone. This can
be explained by the following two aspects: (1) LighGCN removes
nonlinear activation and feature transformation from NGCF that
are not conducive to model learning. (2) We think the more impor-
tant thing is that LighGCN further removes the self-loop in NGCF.
In CGCL, we choose embeddings with similar semantic informa-
tion to construct contrastive pairs, but NGCF with the self-loop
makes embeddings contain the information of two different prop-
erty nodes, which decreases the semantic similarity of embeddings.

5.7 Visualizing Analysis (Q6)
To better understand CGCL and analyze whether the proposed
three contrastive learning objects can improve the node embedding
quality, we use Gaussian kernel density estimation (KDE) to visual-
ize the embedding distribution of items in two-dimensional space

−1 0 1
Fetures

−1.0

−0.5

0.0

0.5

1.0

(a) LightGCN in Yelp.

−1 0 1
Fetures

−1.0

−0.5

0.0

0.5

1.0

(b) LightGCN in Gowalla.

−1 0 1
Fetures

−1.0

−0.5

0.0

0.5

1.0

(c) LightGCN in Books.

−1 0 1
Fetures

−1.0

−0.5

0.0

0.5

1.0

(d) CGCL in Yelp.

−1 0 1
Fetures

−1.0

−0.5

0.0

0.5

1.0

(e) CGCL in Gowalla.

−1 0 1
Fetures

−1.0

−0.5

0.0

0.5

1.0

(f) CGCL in Books.

Figure 7: Feature distribution of item representations learn
from the datasets in R2 (The darker the color, the more items
fall within that area).

and compare it with LighGCN. The results are shown in Figure 7.
The node embeddings learned by LighGCN on the Yelp and Gowalla
datasets fall into several fixed regions, and the node embeddings
learn on the Amazon-Books dataset are approximately evenly dis-
tributed and cannot highlight the importance. However, the node
embeddings learned by CGCL on the three datasets are uniformly
distributed and prominently important, reflecting the alignment
and uniformity of contrastive learning. This shows that the CGCL
can improve the quality of node embeddings by establishing the
relationship between the user and candidate item in different layers
of embedding and better modeling the preferences of different users
and the characteristics of items.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel graph contrastive learningmethod,
called CGCL. In CGCL, we propose to explore the relationship be-
tween the user and the candidate item and use similar semantic
embeddings to construct contrastive pairs. First, in order to estab-
lish the relationship between nodes and structural neighbors, we
propose structural neighbor contrastive learning objects. Then, in
order to establish the relationship between the user and candidate
item, we propose candidate contrastive learning objects. Finally, in
order to establish the relationship between users and the structural
neighbors of the candidate item, we propose candidate structural
neighbor contrastive learning objects.

ACKNOWLEDGMENTS
This work was supported by Shanghai Science and Technology
Commission (No. 22YF1401100), Fundamental Research Funds for
the Central Universities (No. 22D111210, 22D111207), and National
Science Fund for Young Scholars (No. 62202095).

1678

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wei He, Guohao Sun, Jinhu Lu, and Xiu Susie Fang

REFERENCES
[1] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple

Yet Effective Graph Contrastive Learning for Recommendation. CoRR (2023).
[2] Huiyuan Chen, Chin-Chia Michael Yeh, Fei Wang, and Hao Yang. 2022. Graph

Neural Transport Networks with Non-local Attentions for Recommender Systems.
In WWW. 1955–1964.

[3] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In AAAI. 27–34.

[4] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249–256.

[5] Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. 2020.
GraphCL: Contrastive Self-Supervised Learning of Graph Representations. CoRR
(2020).

[6] Kaveh Hassani and Amir Hosein Khas Ahmadi. 2020. Contrastive Multi-View
Representation Learning on Graphs. In ICML. 4116–4126.

[7] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2020.
Momentum Contrast for Unsupervised Visual Representation Learning. In CVPR.
9726–9735.

[8] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. TriRank: Review-
aware Explainable Recommendation by Modeling Aspects. In CIKM. 1661–1670.

[9] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR. 639–648.

[10] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. NAIS: Neural Attentive Item Similarity Model for Recom-
mendation. IEEE Trans. Knowl. Data Eng. 12 (2018), 2354–2366.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. InWWW. 173–182.

[12] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[13] Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and Tat-Seng
Chua. 2020. Hierarchical Fashion Graph Network for Personalized Outfit Recom-
mendation. In SIGIR. 159–168.

[14] Guogang Liao, Ze Wang, Xiaoxu Wu, Xiaowen Shi, Chuheng Zhang, Yongkang
Wang, XingxingWang, andDongWang. 2022. Cross DQN: Cross DeepQNetwork
for Ads Allocation in Feed. InWWW. 401–409.

[15] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning.
In WWW.

[16] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-aware
Message-Passing GCN for Recommendation. InWWW. 1296–1305.

[17] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collaborative
Filtering. In CIKM. 1243–1252.

[18] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
2021. UltraGCN: Ultra Simplification of Graph Convolutional Networks for
Recommendation. In CIKM. 1253–1262.

[19] Kenta Oono and Taiji Suzuki. 2020. Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification. In ICLR.

[20] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang
Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical
Mutual Information Maximization. InWWW. 259–270.

[21] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In KDD. 1150–1160.

[22] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. 452–
461.

[23] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Recom-
mender Systems Handbook. In Recommender Systems Handbook. 1–35.

[24] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
unified embedding for face recognition and clustering. In CVPR. 815–823.

[25] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief, and
Dongsheng Li. 2021. How Powerful is Graph Convolution for Recommendation?.
In CIKM. 1619–1629.

[26] Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming
Tang, and Xiuqiang He. 2019. Multi-graph Convolution Collaborative Filtering.

In ICDM. 1306–1311.
[27] Yijun Tian, Chuxu Zhang, Zhichun Guo, Chao Huang, Ronald A. Metoyer, and

Nitesh V. Chawla. 2022. RecipeRec: A Heterogeneous Graph Learning Model for
Recipe Recommendation. In IJCAI. 3466–3472.

[28] Ke Tu, Peng Cui, Daixin Wang, Zhiqiang Zhang, Jun Zhou, Yuan Qi, and Wenwu
Zhu. 2021. Conditional Graph Attention Networks for Distilling and Refining
Knowledge Graphs in Recommendation. In CIKM. 1834–1843.

[29] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph Convolu-
tional Matrix Completion. CoRR (2017).

[30] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. CoRR (2018).

[31] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho
Kannala, and Jian Tang. 2021. GraphMix: Improved Training of GNNs for Semi-
Supervised Learning. In AAAI. 10024–10032.

[32] Feng Wang and Huaping Liu. 2021. Understanding the Behaviour of Contrastive
Loss. In CVPR. 2495–2504.

[33] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-Task Feature Learning for Knowledge Graph Enhanced Recom-
mendation. InWWW. 2000–2010.

[34] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[35] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering. In SIGIR. 1001–1010.

[36] Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, and Qingyong Li. 2020. Multi-
Component Graph Convolutional Collaborative Filtering. In AAAI. 6267–6274.

[37] ChunyuWei, Jian Liang, Di Liu, and Fei Wang. 2022. Contrastive Graph Structure
Learning via Information Bottleneck for Recommendation. In NIPS.

[38] Chuhan Wu, Fangzhao Wu, Tao Qi, Qi Liu, Xuan Tian, Jie Li, Wei He, Yongfeng
Huang, and Xing Xie. 2022. FeedRec: News Feed Recommendation with Various
User Feedbacks. InWWW. 2088–2097.

[39] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. 2021. Self-supervised Graph Learning for Recommendation. In
SIGIR. 726–735.

[40] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. 2021. Self-
supervised learning on graphs: Contrastive, generative, or predictive. TKDE
(2021).

[41] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. 2022. SimGRACE: A
Simple Framework for Graph Contrastive Learning without Data Augmentation.
In WWW. 1070–1079.

[42] Jiaxing Xu, Jinjie Ni, Sophi Shilpa Gururajapathy, and Yiping Ke. 2022. A Class-
Aware Representation Refinement Framework for Graph Classification. CoRR
(2022).

[43] Siyong Xu, Cheng Yang, Chuan Shi, Yuan Fang, Yuxin Guo, Tianchi Yang, Luhao
Zhang, and Maodi Hu. 2021. Topic-aware Heterogeneous Graph Neural Network
for Link Prediction. In CIKM. 2261–2270.

[44] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
2017. Deep Matrix Factorization Models for Recommender Systems. In IJCAI.
3203–3209.

[45] Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang.
2022. AutoGCL: Automated Graph Contrastive Learning via Learnable View
Generators. In AAAI. 8892–8900.

[46] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are Graph Augmentations Necessary?: Simple Graph Contrastive
Learning for Recommendation. In SIGIR. 1294–1303.

[47] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2022.
Self-Supervised Learning for Recommender Systems: A Survey. CoRR (2022).

[48] Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin,
Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, Yushuo Chen, Lanling Xu,
Gaowei Zhang, Zhen Tian, Changxin Tian, Shanlei Mu, Xinyan Fan, Xu Chen, and
Ji-Rong Wen. 2022. RecBole 2.0: Towards a More Up-to-Date Recommendation
Library. In CIKM. 4722–4726.

[49] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu,
and Kun Gai. 2018. Deep Interest Evolution Network for Click-Through Rate
Prediction. CoRR (2018).

[50] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Xiao Ma, Yanghui Yan, Xingya
Dai, Han Zhu, Junqi Jin, Han Li, and Kun Gai. 2017. Deep Interest Network for
Click-Through Rate Prediction. CoRR (2017).

[51] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph Contrastive Learning with Adaptive Augmentation. InWWW. 2069–2080.

1679

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Graph neural networks
	2.2 Graph Contrastive learning

	3 Problem and Background
	3.1 Preliminary
	3.2 Graph neural network in recommendation
	3.3 LightGCN Backbone

	4 The Proposed method
	4.1 Contrastive Learning with Structural Neighbors
	4.2 Contrastive Learning with Candidate
	4.3 Contrastive Learning with Candidate Structure Neighbors
	4.4 Optimization with CGCL

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Comparison with State-of-the-Arts (Q1)
	5.3 Parameter Analyses (Q2)
	5.4 Impact of Data Sparsity Levels (Q3)
	5.5 Ablation Experimental (Q4)
	5.6 Different GNN Backbones (Q5)
	5.7 Visualizing Analysis (Q6)

	6 Conclusion and Future work
	Acknowledgments
	References

